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A careful analysis of mechanical descriptions provides a new logical foundation 
for the states and probabilities of mechanics which leads to a new understanding 
of quantum probabilities and their representation in Hilbert space. It is argued 
that all mechanical theories use a logic which is distributive but only relatively 
orthocomplemented, and that this, too, is the structure of its states. Probabilities 
are derived from this analysis using standard Kolmogorov definitions in a way 
that accounts for the nonstandard peculiarities of the quantum transitional 
probabilities as well as classiciat probability assignments. At the end of the paper 
this analysis is used to refute arguments that quantum mechanics is nondistributive 
and that the failure of Bell's inequality in quantum theory threatens our conceptual 
scheme. Instead we reach a much less drastic interpretation of quantum mechanics. 

I N T R O D U C T I O N  

Probabilities are traditionally understood as assignments to "events," 
an understanding which arises naturally from the representation of classical 
mechanics in phase space. However, the development of quantum mechanics, 
which uses probability assignments but does not appear to have an "event 
space," has led to interpretive problems and also some very extreme "solu- 
tions." For example, some authors propose that we use a nondistributive logic 
in quantum theories, or that properties have no reality at the subatomic scale. 

In this paper we reexamine the foundations, and develop a generalized 
analysis of probabilities which accounts for classical and quantum theories. 
This generalization does not violate our usual understanding of probabilities, 
since they remain defined in the traditional way as measures over Kolmogorov 
probability spaces. The key departure from tradition is in a more general 
sense of conditional which is introduced here. On this analysis the quantum 
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transitional probabilities are strongly conditional in the sense that the probabil- 
ity space itself will depend on the initial condition. It is shown that classical 
theories do not use such strongly conditional probabilities. 

Section 1 of this paper develops the logical framework for this analysis, 
a refinement of results first presented in Garden (1984). In Section 2 the 
relationship between logic, measurement, and probability assignments is made 
clear. A mathematical foundation for classical and quantum probabilities 
is presented and then applied specifically to interpreting the Hilbert space 
representation of quantum probabilities. Section 3 examines some arguments 
which are contrary to this view--specifically, we discuss arguments for 
the nondistributivity of quantum mechanics and the breakdown of Bell's 
inequality. It is argued that quantum theories are not nondistributive and that 
the failure of Bell's inequality in no way leads to a conceptual upheaval. 
Instead we suggest this analysis provides a simple nonradical understanding of 
quantum mechanics which is perhaps close in spirit to Einstein's early views. 

1. PROPOSITIONAL LOGIC 

1.1. The Language of  Mechanics  

The language used by mechanics to describe reality is derived from 
primitive magnitudes and their value-sets. Elementary descriptions assign 
values, or ranges of values, to the magnitudes and thus have a particular 
mathematical form--they can be represented by ordered pairs (M, A), where 
M is a magnitude of the theory T and A a Borel subset of values of M, i.e., 
A C_ VM, where VM C ~ .  We understand such an ordered pair as the predicate 
"the value of M is in A" or "M has a value in A." Such descriptions are in 
fact parametrized by time, as we discuss below. 

The elementary language of a particular mechanical theory thus has 
structure generated by relations among the magnitudes, especially those 
derived from primitive magnitudes, and also by set relations on the value- 
sets of each magnitude. For example, if p = (M, A), then p± = (M, VM -- 
A), where VM - A is the set complement of A in VM. Similarly, where Pl = 
(M, Al) and P2 = (M, A2), then Pl -< P2 ¢=~ At C_C_ A2 for AI, A2 both Borel 
subsets of VM (the restriction to Borel subsets is precisely to ensure that such 
relations are well defined). The language appropriate to express the elementary 
descriptions of any theory will therefore be one which uses variables to 
represent the ordered pairs (M, A) and has at least two connectives among 
these variables to express the relations -< and ± among the ordered pairs 
defined above. We use the following recursive definition: 

Definition. The formal language L of mechanical theory T is generated 
by the following rules: 
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(F1) 

(F2) 

If p = (M, A) for M a magnitude of T and A a Borel subset of 
VM, then p E L. 
If a,  13 ~ L, then so are -~a and cx D 13. 

The set L of  well-formed formulas (wffs) thus contain variables p, q . . . .  
representing the elementary predicates of form (M, A), and complex wffs 
generated from these by monadic ~ or binary D, which we call negation 
and hook, respectively. Other connectives will be introduced later by abbrevia- 
tions; see below. 

1.2. The Logic of  Mechanical Descriptions 

Truth and falsity are concepts which lie at the heart of the meaning of 
description, and are used to derive a logic L from formal language L. As 
usual we represent these undefined concepts by the two 'truth-values' t and 
f, respectively. 

We leave it to metaphysics to consider the nature of realiO; how it is 
that language can describe reality, and what therefore it "really means" to 
say that an elementary mechanical description is true or is false of a particular 
system. Answers to these metaphysical questions can sometimes distort the 

• analysis of logic, states, and probabilities, leading to inappropriate assump- 
tions which result in absurdity. Here we limit underlying assumptions to the 
minimum and we make them explicit--we assume there is a "real world" and 
that 'truth-values' are consistently assigned to the descriptions of mechanics in 
attempts to "describe" the real world. Later we assume also that measurement 
provides some of these truth-values. Explicitly we postulate: 

(P) Mechanical theory T describes a real system by first assigning 
truth-values to elementary descriptions in L and then extending 
these in a consistent way to be truth-value assignments to com- 
plex expressions. 

This assumption underlies the development of logic L from the language L. 
First we note that strictly speaking the elementary expressions of 

mechanics, i.e., the predicates of  form (M, A) are not identical with proposi- 
tions. It is only when assigned a truth-value that these ordered pairs express 
a proposition in the sense that they express a description of reality. Also 
we note that in mechanical theories truth-value assignments to elementary 
predicates are understood as being parametrized by time, so that we as it 
were label the predicate with a particular time variable when we assign it a 
truth-value. Thus we do not simply say that "p is true of system S," but 
instead "p is true of S at time to," or alternatively, "magnitude M has a value 
in A at time to on S." 
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Here we sometimes simplify matters by ignoring these distinctions. Thus 
we may occasionally ignore the difference between elementary predicates 
(M, A) and the elementary propositions expressed by (M, A) when truth- 
values are assigned. For here we shall only consider the first-order truth- 
functional logic derived from these elementary constituents, since this system 
underlies the probability assignments (although a modal extension of this 
logic to express probability descriptions will be sketched). In this context 
ambiguity will not generally result from referring to predicates as propositions. 
Similarly we do not always distinguish between the language L and logic of 
a theory, although we do use a bold L for the logic where this distinction is 
useful. And lastly in this discussion we generally ignore the time dependence 
of truth-value assignments. The major issues here are time-independent fea- 
tures of classical and quantum mechanical descriptions. 

Our postulate requires consistent descriptions, and we understand this 
to require that truth-value assignments to wffs of a theory must respect 
relations among the elementary constituents--i.e., the assignments must be 
consistent with relations among the ordered pairs generated either by set 
relations on the value-sets or by relations among magnitudes established by 
the theory's laws. Such consistent truth-assignments we call valuations. A 
valuation h is thus a structure-preserving mapping from the wffs to the two 
truth-values. The structure-preserving nature of valuations will be expressed 
by the valuation rules, and these will also determine the nature of the logi- 
cal connectives. 

Note, however, that according to postulate (P) valuations need not be 
bivalent--they may be partial truth-value assignments taking only some 
members of L to {t, f}. Indeed partial assignments are most often actually 
used in the practice of mechanics, since these correspond to valuations where 
not all values of all magnitudes are known precisely, and so these partial 
assignments represent descriptions where probability assignments are used. 
Second, consistency requires that valuations preserve the relations among 
elementary constituents discussed above. And third, valuations must define 
connectives D and ~ with properties which let these connectives express 
implication and negation. In particular we want D to generate a standard 
sense of logical equivalence. These considerations motivate the following 
definition, where L is the language of theory T: 

Definition. A valuation h is a structure-preserving mapping h: L ---) { t, f } 
such that Vet, 13 e L, the following hold: 

(v-,) 
(v3) 

If h(et) = t, t h e n  h( ' - ,e t )  = f 

If h(et) = t, then h(et D [3) = h([3); if h(et) = f, then h(et D [3) 
t. 
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If h(a) ~ {t, f} then if h(13) = f h(o~ D t3) ~ {t, f}, and 
h(c~ D 13) = t otherwise. 

These rules preserve the structure of elementary constituents, since set- 
ting p± = -,p ensures by (V-,) that when the "the value of M is in A" is 
true, "the value of  M is VM - A" is false. Similarly, the first part of condition 
(VD) preserves elementary --< by requiring that if p --< q, then h(p D q) = 
t for every h, so if it is true that "the value of M is in A," it is also true that 
"the value of M is in A*" for A C A*. The other parts of (VD) express 
properties of D which we require to express logical deduction. There may 
be some debate about exactly which valuation rules are appropriate, but these 
conditions are guided by the requirement that D be represented by a partial 
ordering, and in particular that it be reflexive, i.e., we want (c~ D c~) to be 
always true in order to preserve the usual sense of logical equivalence. 

The definitions expressed in the valuation rules (V-,) and (VD) are 
represented schematically in Table I, where the asterisk represents the case 
for any c~ in L, where h(a) ~ {t,f}. The first columns show that the valuation 
rules defining -1 and D are well defined. 

The following terminology is useful to a discussion of logic: 

Definitions. (a) ~ is true in valuation h if h(et) = t; ot is false in h if 
h(et) = f. (b) ot is decided in h if h(ct) E { t, f} ; C~ is undecided in h otherwise. 
(c) ot is logically true, ~ a ,  if h(~) = t for all valuations h of  L. 

We are now concerned with the structure common to the logic of any 
mechanical theory, i.e., the logic generated from language L and valuation 

Table I .  The Definit ions Expressed in the Valuation Rules (V- , )  and ( V D )  ° 

a 13 -~ot ot D [3 - - a  Tot Fot U a  a v 13 ot A [3 ot --=--- [3 

t t f t f t f f t t t 

t f f t f f 
l * * * t * * 

f t t t t f t f t f f 

f f t f f t 
f * t * f * 
• t * t t f f t t * * 

• f * * f * 
• * l * * l 

"The  asterisk represents the case for any ot in L, where  h(ot) ~ {t ,f}.  The first co lumns  show 
the valuation rules defining ~ and D are well defined. The nonprimit ive connect ives listed 
here are defined by the fol lowing abbreviations: true: Tot = " - o t ;  false: Fot = " ( " o t  v ~ot);  
undecided: Uot = ~(Tot v Fet); denial: ~c~ = c~ D -,ot; disjunction: ot v [3 = ( a  D (c~ D [3)); 

conjunction: a A [3 = "("C~ V "13); logical equivalence: ot --= [3 = (c~ D [3) A ([3 D a) ;  as 

one can check. 



864 Garden 

rules (V~) and (VD) above. In fact the resulting system L is complete, i.e., 
it can be shown that the logical truths can be derived as theorems in an 
axiomatic system (see, e.g., Rescher, 1969, and Garden, 1984). 

This logic is a generalization of classical bivalent logic in which D is 
entirely classical. For example: 

(Law of Identity): ~ et D oL 
(Law of Distributivity): ~ (e~ v ([3 A 3')) --= ((e~ v [3) ^ (~x v 3')) 

Other " laws"  of  inference also hold in this logic. The change from classical 
bivalent logic comes from the fact that when bivalence is not assumed one 
can distinguish two different senses of "no t" :  

(Law of Double Negation): ~ ~ ------ o~ 
(Law of Excluded Middle): ~ etv -- et 

We call -1 negation, and ~ denial. In bivalent classical logic both " laws"  
are satisfied by the single monadic operator. But in L two different monadic 
operators can be distinguished and each is associated with just one of  these 
laws. Excluded Middle holds for ~ but does not hold for -1 in L. 

This distinction is familiar in ordinary language and also is useful in 
special situations such as switching circuits or the logic of computer programs, 
where, for example, we need sometimes to distinguish between a switch or 
command having value 0 because the circuit or procedure in which it is 
contained has not been accessed, and having value 0 because it has been 
accessed but is switched "off ."  Similarly in ordinary language we can distin- 
guish between "not"  in the weak sense of  failing to be true (denial) and in 
the stronger sense of the opposite being true (negation). If I deny that the 
pudding is sweet, for example, I may not be asserting that it is sour. Perhaps 
there is no pudding, or it is a painting of a pudding, or a treat for the cat, 
or part of a child's game with c lay . . .  We can readily distinguish between 
negation, "the pudding is sour," and denial, "it  is not true that the pudding 
is sweet." Logic L therefore characterizes ordinary discourse more aptly than 
classical bivalent logic. 

We investigate the algebraic characteristics of  logic L by using the 
standard Lindenbaum-Tarski construction of a representative algebra of  
equivalence classes. For a, [3 e L, and set H of valuations of  L, we have: 

Definition. The (Lindenbaum-Tarski) algebra L representing L is L = 
([L], -<, ±), where [L] = {[a]: [3 e [cx] if ~o~ -- [3}; [e~] --< [[3] if ~¢x D [3; 
and [o~] ± = [~e~]. 

One can show this structure is well defined in the sense that the elements 
of  [L] do not depend on the wff  representing them, and the relations are 
similarly well defined and do not depend on the choice of  wff. For example, 
for c~, 13 • L, then 
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[04 = [13] <=> i=oL -= 13 <=> ~= --o~ - -'IS ~ [o4 ~ = [IS] I 

by the logic L. 

Lemma 1.1. Logic L is represented by a distributive relatively orthocom- 
plemented lattice L. 

That L is a distributive lattice follows from the corresponding results in 
the logic. For example, by the definition of disjunction [a] v [13] = [c~ v 13], 
and by definition of conjunction [c~ A 13] = [(X] A [13], and from the fact that 
distributivity holds in the logic, i.e., ~ct v (13 A 3') -- (Ct V 13) ^ (Ct V 3'), it 
follows that the lattice is distributive, i.e., let] v ([13] A [3']) ---- ([tx] v [13]) 
A ([et] V [3']). The lattice has l = [(et D or)], 0 = [~(a D ct)], but while 
operation i is an involution since tot] ±± -- [ ~ o t ]  = [od, it is not a full 
lattice complement since [a] v [et] j- = [etv -,ct] ~: tot D ct] = I. To see that 

is a relative orthocomplement we first define: 

Definition. The logical context of ~, C,~ = {[3: b(e~ A -'et) D 13 and 
~p D (a v ~a)}. 

One can show that this is a subsystem of the logic, i.e., ([C~], -<, ±> is 
closed with respect to the operations. By construction tot] ± is the complement 
of [et] relative to [C,~], for any et, as [ct A "Ct] and [ctv-,et] are the 0 and l, 
respectively, of [C~,]. Since this is also an involution as shown above, [a]± 
is an orthocomplement of  [ct] relative to this subsystem. 

The logic L is thus a slight generalization of classical bivalent logic 
where implication retains all its traditional properties but where negation has 
weaker properties. Algebraically the generalization from classical bivalent 
logic is characterized by a move from a Boolean algebra, i.e., a distributive 
lattice with full lattice orthocomplement, to representation by a distributive 
lattice which is only relatively orthocomplemented. 

Note that according to this analysis the logic L is used by all mechanical 
theories, including classical theories. No special consideration has yet been 
given to quantum theories. We simply note that all mechanical theories use 
partial descriptions, i.e., valuations which are not bivalent, and so L is a 
more appropriate system than a bivalent logic to represent the first-order 
logic of mechanics. 

1.3. Valuat ions  and States  

Although the logic used by classical and quantum theories is the same, 
we now examine the differences between these theories by considering the 
structure of valuations in either theory. 

Definitions. For p = (M, A) an elementary predicate of L and e~ e L, 
any h E H: (a) The elementary truth-set of h, ET h = {p: h(p) = t}; EFh = 
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{p: h (p) = f}; (b) The truth-set of h, Th = {et: h(ct) = t}; Thefalsi~,-set 
of h, Fh = {13: h(13) = f } .  

The elementary truth-set of a valuation is the set of predicates true in 
that valuation, while the elementary falsity-set EFh is the set of predicates 
false in h. Similarly, the truth-set of h is the set of  all wffs true in h, and the 
falsity-set F;, of h is the set of wffs false in h. We can now define: 

Definitions. (a) For hi, h2 in H, hi contains h2, hj <- h,, if ET;,2 C ETht. 
(b) h ± ~ H is the converse of h if ET;,± = EFh. 

One valuation contains another if its elementary truth-set contains the 
other, i.e., if it makes at least the same truth-assignments to elementary 
predicates. It is easy to show that if he --< hh then also EF;,2 C_ EFh~ and Th2 
C__ Thl. Clearly containment is a partial ordering on H since it is generated 
by set-inclusion. One valuation is the converse of another if all elementary 
predicates true in one are false in the other. The valuations of a theory are 
thus a system H = (H, -<, l) .  

There is a natural correspondence between valuations in H and wffs in 
logic L. For any h E H, et e L: 

Definitions. (a) ha is the characteristic valuation for wff et if Th~ = {13: 
~et D 13}. (b) 3'h is the characteristic ~vff for valuation h if ~ 3'h -- (Ct ^ 13) 
for all ct, 13 ~ Th. 

The valuation h~, characterizes wff  a in the sense that it finds true all 
and only the logical consequences ofct. In this sense it is the "least" valuation 
which finds wff ct true. One shows this is well defined by noting that 

h,~ = hi3 ¢:, {3': ~ct  D 3'} = {3': ~13 D 3'} ¢e; ~ct -- 13 

The wff 3'h characterizes valuation h if it is equivalent to the conjunction of 
all wffs found true in h. Once more one can show it is well defined since 
~ 3 ' h  ---- 3'h* ¢=> T3 'h  = T3"h* ¢=~ h = h * .  There is therefore a 1-1 correspondence 
between (equivalence classes of) wffs and valuations: 

Lerama 1.2. [L] ~ H. 

The set of (equivalent) wffs and valuations exactly correspond. For 
every ct ~ L there is a corresponding h,, E H by the definition, and for every 
h ~ H there is a corresponding 3'h, by the definitions above. Clearly equivalent 
wffs generate identical valuations by the discussion above. It is often assumed 
that a stronger result holds, which is that the structure of valuations H = 
(H, --<, 1) defined above is also representative of the logic, i.e., that the two 
structures L and H exactly coincide. Note, however, that to show that L = 
H would be to show ~(ct D 13) ¢=> Th, C The. In fact we can show ~ easily, 
but ~ does not follow, since it may be that T;,~ C Thl3, yet h(a) ~ {t, f}, 
h([3) = t, in which case h(ct D 13) 4: t, so ~ a  D 13 fails. 
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Lemma 1.3. H is a distributive relatively orthocomplemented lattice, for 
any theory T. 

This follows from Lemmas 1.1 and 1.2 and the discussion above: since 
[oL] -< [13] ~ h~, <- h~ for any a,  13 ~ L, H is a distributive lattice. In fact 
relations ± on either system coincide, for [13] = [a]± ¢ ~  Tht 3 = ETh-~,~ = 
EFh,~ ¢:* h~ = (h,~) z. 

We are now ready to investigate differences between the structures H 
of  different theories. We need some standard terminology. For any h e H 
the valuations of theory T: 

Definitions. (a) h is maximal if there is no other h* e H such that h C 
h*. (b) h is bivalent if V ot in L, either a E T~ or ~ a  E Th. (c) h is a state 
if h is maximal in H. 

Maximal valuations are maximal with respect to <- and in this sense 
they represent the "ful lest"  descriptions of  a theory. There are no other 
valuations which make the same truth-assignments to elementary predicates 
and also make more. Bivalent valuations are exhaustive with respect to --1, 
i.e., either h(o0 = t or h (~a)  = t, so either h(a) = t or h(~) = f and they 
are two-valued mappings from L onto the truth-set { t, f}.  Clearly where they 
exist bivalent valuations must be maximal, but the converse is not necessarily 
the case, i.e., maximal valuations may not be bivalent. Lastly we call the 
maximal valuations states--these are the "fullest" valuations provided by a 
theory. (Later we see that "quantum state" refers to valuations which may 
not be states of  a quantum theory; see Section 2.4 below.) 

Clearly, states, the maximal valuations of a theory, may or may not be 
bivalent. This will depend on the structure of  elementary predicates, and in 
particular on how the magnitudes of a theory and hence the elementary 
predicates are related. In what follows we are particularly interested in the 
difference between theories which do have bivalent valuations and those 
which do not. In fact we adopt the following terminology: 

Definitions. (a) In a classical theory T every maximal valuation of L is 
bivalent. (b) In a quantum theory T maximal valuations of  L are not bivalent. 

We show in what follows that the condition used here to distinguish 
classical from quantum theories is enough to account for all the different 
properties of their probability assignments, thereby justifying the definition. 
That is, the difference between classical and quantum theories is fundamen- 
tally a difference in the structure of  their valuations and hence ultimately in 
the structure of  their elementary descriptions, i.e., their magnitudes and value- 
sets. The entire system of  elementary predicates of  a classical theory can be 
consistently mapped onto {t, f}, while in quantum theories only partial 
structure-preserving assignments of  truth-values can be made. 
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Sometimes it is assumed that in a classical theory all valuations are 
bivalent and hence that the theory uses classical bivalent propositional logic. 
However, this is not supported by our actual use of classical mechanics, since 
in fact almost all classical descriptions of reality are imprecise and it is 
this very feature which makes their probability statements of interest. What 
characterizes classical theories is the principal expressed in the definition 
above--not that every valuation is two-valued, but rather that every valuation 
of a classical theory can be extended to a two-valued one. Quantum theories 
on the contrary are characterized by the fact that this is not possible, i.e., that 
maximal valuations are not bivalent, i.e., two-valued valuations do not exist. 

It is important to stress that the logic of  classical and quantum descrip- 
tions is the same. In both cases this logic is a slight generalization of classical 
bivalent logic where implication has all the traditional properties but where 
negation is weaker. One can, however, distinguish classical from quantum 
theories by their "logic of  states." In classical theories we can restrict set H 
to the subset H* of bivalent states, and this will generate a system L* which 
is classical bivalent logic. This follows from the fact that where the valuation 
rules are limited to bivalent valuations the definitions of connectives -, and 
D coincide with those of bivalent classical connectives. It is well known that 
the representative algebra L* of classical bivalent L* is a Boolean algebra, i.e., 
distributive and fully orthocomplemented. It is also well-known by Stones' 
theorem that L* is in this case equivalent to its Stone space, the system of 
Boolean ultrafilters containing members of L*, and that this structure coin- 
cides with H*. So in this special case systems H* and L* are equivalent. In 
quantum theories, however, the "logic of states" will not be classical bivalent 
logic because maximal valuations are not bivalent, so although there is a 
subset H* of maximal valuations in H, these do not generate bivalent logic 
and there is no Stone space of Boolean ultrafilters representing these states. 

The special Boolean properties of L* and H* in classical theories have 
misled us about the foundation of probability assignments and especially 
about the role of logic and valuations in probabilities. It has been assumed 
that the lack in quantum theories of a bivalent Boolean "logic of states" L* 
and corresponding Stone space H* of states marks a breakdown in the logic 
of quantum theories and also in the probability theory, essentially because it 
is assumed that the structures L* and H* represent the logic, states, and 
probability field over which the probabilities are defined. However, we saw 
that the logic L and valuations H of any theory are distributive but not 
Boolean, and only in classical theories is there a "logic of states" L* and 
system of states H* with Boolean properties. This arises solely from the lack 
in quantum theories of bivalent states. However, we now argue that this does 
not mark a breakdown in quantum probability theory. In fact probability 
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assignments can be defined in any mechanical theory over a standard Boolean 
field of sets. 

2. PROBABILITIES 

2.1. The Fundamental Definition 

To consider how probabilities arise in mechanical theories and their 
relationship to logic L, we need to consider again the role of valuations. 
Recall that valuations describe reality by assigning truth-values to elementary 
predicates, and hence to wffs, in a structure-preserving way. The nature of  
reality and description are not addressed here, we simply note that reality is 
described when some predicates are found true, others false, of some particular 
real system at some particular time. But in addition to making truth-value 
assignments, a valuation can describe reality by assigning probabilities, telling 
us not that p is true or false, but there is a particular probability that p 
"might"  be true of a system, or that proposition q is "certain to be true" of  
it, at a particular time. In fact in mechanical theories such predictions are 
most often linked to measurement on the system, so that we generally have 
assertions about the " l ikel ihood" of  p = (M, A) being found true after 
a measurement of the magnitude M. Measurement is discussed below in 

Sect ion  2.2 
First we deal with the general case of  assigning a probability where no 

measurement is specified, and suggest the following analysis. A relation can 
be distinguished over H which associates with any valuation h all the other 
valuations which could be used after h to describe the same reality. We call 
this the successor relation and it relates to h all valuations which are consistent 
with h in the sense that they could be used in a successive description of the 
same reality described by h, at the same time to. Later we shall sketch how 
such an "accessibility" relation can provide a modal extension of L which 
does not rely on the usual "possible worlds" semantics and which expresses 
probabilistic descriptions. 

We now formally characterize the successor relation S. There are two 
important conditions, reflecting that this is essentially a minimal "consis- 
tency" relation on H: 

(SI) h2 S hi iff EThl N EFh2 = Q. 
($2) If h2 S hi, then Vp e EThb if 3h* e H such that ETh, = ETh2 LI 

Thp , then Thp C Th2. 

According to (S 1), a successor of  valuation h does not find false any elemen- 
tary predicate that h finds true. This expresses our understanding that if h 
finds that " M has a value in A" is true of  a system at time to, then a successor 
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cannot find that " M has a value in VM - A" is also true of  the same system 
at the same time to. According to ($2), information about a system is retained 
where it can be consistently combined with what was known before. Anything 
true in h~ which is consistent with hz is also true in h2, so that truth assignments 
are not simply abandoned in successive valuations if they can be consis- 
tently retained. 

We now briefly sketch how relation S over H defined by (S 1) and ($2) 
above can be used as an "accessibili ty" relation to define what we mean by 
"possible," in the sense of  having "nonzero probability," or what we mean 
by "certain," in the sense of having "probability 1" [i.e., this relation is 
used to generate a modal semantics which is more general than the traditional 
Kripke semantics, and does not involve the notion of  a "possible world";  
see Garden (1984), Chapter 7]. Formally we extend logic L of theory T by 
introducing the following modal formation and valuation rules: 

(FD) 

(Vm) 

If c~ ~ L, then Dot c LM. 
Abbreviation: Oa = d f  ~ o a  ~ .  
For any h ~ H, h(Dct) = t iff Vh*: h* S h, h*(cx) = t. 

The formation rule (FD) introduces modal wffs of  form Dtx into the modal 
extension LM, and the abbreviation adds wffs of  form Oa. The valuation 
rule (Vrn) extends any valuation h of  L to a corresponding valuation h of  
LM. According to this rule a wff is certain according to h, i.e., h(DcQ = t, 
if according it is true in all valuations which are successors to h. It is easily 
established that a wff is possible according to h [i.e., h(©a)  = t] if it is true 
in some valuation h* which is a successor of h. 

The modal extension L M  of L, formed by adding these rules to those 
for L, allows us to express probabilistic statements about the certainty or 
possibility of any wff, given an initial valuation. This expresses probability 
statements if "certainty according to h"  is understood as coinciding with 
"has probability 1 according to h"  and "possibility according to h"  coincides 
with "has nonzero probability assigned by h." For more discussion of  this 
modal extension see Garden (1984). Here we move directly to develop these 
ideas for the logical foundation of probability assignments in mechanics. We 
note that a natural way of developing these ideas is to suggest that the 
probability assigned by h to p to describe the system at time to will be a 
measure o f  the successor valuations o f  h which f ind  p true o f  the system at 
to. In what follows we first formalize this as a definition, then show in the 
rest of  the paper how very successful this is as a generalized foundation for 
probabilities, yielding classical assignments in classical theories, but strong 
conditional probabilities in nonclassical theories which have all the key 
peculiarities of  quantum transitional probabilities. For the first time we can 
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understand the quantum assignments as generalized but essentially classi- 
cal probabilities. 

We now seek to formalize the analysis sketched above. Probabilities 
assigned by h are to be measures of appropriate successor-sets of h. In 
formalizing this insight we first note that in taking a "measure"  of the 
successor valuations of h we can restrict attention to the maximal valuations. 
Every valuation h is contained in a maximal valuation, by definition of 
maximal, and so in "count ing" the successors we can "count"  just the 
maximal successors. We now define the following sets. For any h e H, c~ 
e L: 

Definitions. (a) The successor-set Sh = {h*: h* E H, h* is maximal, 
and h* Sh}. (b) The a-successor-set S~, = {h*: h* e Sh and h(a) = t}. 

The successor-set contains all states which are successors of  h, i.e., Sh 
contains all maximal valuations meeting conditions (S1) and ($2) above. The 
a-successor set contains those states in Sh which find wff a true. These sets 
will provide the logical foundation for probability statements. We say that 
wff a has nonzero probability according to h if S~' ~ Q~, i.e., if a is true in 
some successor valuation of h. Similarly wff a has probability 1 according 
to h if S~ = Sh, i.e., if all successor states of h find a true. Extending this 
analysis, we say that the probability of a according to h will be a measure 
of  how near the a-successor-set of  h is to being the whole successor-set of  h. 

A proper mathematical foundation for this analysis is provided when 
we identify a probability space over which these measures are defined. 
According to standard Kolmogorov probability theory this must be a triple 
(X, ~,  Ix), where X is a set, ~ a field of  subsets of  X, and Ix a probability 
measure defined over this field. In fact the definitions above provides such 
a space. For any h we have the set Sh of  successor-states, and from this we 
can generate a field of  subsets using the definition above of  a-successor-sets. 
This provides the fundamental definition first presented in Garden (1984): 

Fundamental Definition. For any h e H there is a Kolmogorov probabil- 
ity space (Sh, ~h, Ixh), where Sh is the successor-set of h and ~h = (Fh, I"1, 
U, - )  is the field of  subsets of  Sh where Fh = {S?,: a e L}, and Ixh is a 
probability assignment over ~h. 

The probability of  a according to initial condition h, probh(a) = 

The probability space for any h is generated by its successor-states Sh 
and a field of subsets of this set. We establish that ~ ,  is indeed a field of 
subsets of Sh by showing that set operations correspond to logical connectives. 
For example, h* E S~ U S~ :=~ h* S h and either h* (a)  = t or h* (j3) = 
t =* h* e S~ ''13, and similarly h* e $7, "~ ~ h* S h and h*(c~ v 13) = t 
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h* e S~, U S~, and so S~ U S~, = S~ ''~. If countable disjunctions are allowed 
in L, then ~ ,  is a g-field. Note that it is connective -- which generates set 
complement among the subsets. For where - is set complementation in ~h, 

h* ~ -(S~') ¢:¢,h* (a)  4: t & h* S h ¢=> h* ( - a )  = t & h* S h ¢~ h* E S~ "~ 

and so -($1]') = S~ '~. The probability space defined is thus a standard Kolmo- 
gorov space and txh is a standard probability measure. The last part of the 
definition tells us that the probability of  a,  given initial h, is a probability 
measure over this field of  the a-successor-set of h. 

From the natural correspondence between wffs in L and valuations in 
H we derive the expressions: 

Definitions. (a) prob~,(13) = probh,~([3), where ha is the characteristic 
valuation for a ;  (b) probh(h*) = probh(~/*), where ~/* is the characteristic 
wff for h*. 

That is, probabilities may be assigned from wffs to wffs, or from valua- 
tions to valuations. 

The fundamental definition makes clear that the probabilities are stan- 
dard Kolmogorov probability measures and therefore have all the traditional 
properties associated with probability assignments. Probabilities are measures 
over a Boolean field and the set operations on this field are reflected in the 
probability assignments in the usual way. So this analysis does not involve 
generalizing our usual notion of  a probability in the sense of changing the 
properties of the measure or the properties of  the underlying set structure 
which is so important to the definition. This is a generalization of traditional 
ideas only in one respect, and that is in regarding the probabilities as funda- 
mentally conditional on the initial condition. The probabilities are strongly 
conditional in the sense that the choice of  probability space itself depends 
on the initial condition. 

This fundamental definition also makes clear the relationship between 
logic, valuations, and probability assignments. Neither the logic L nor the 
system H of valuations of a theory provides the field of sets in the probability 
space for the theory's probability assignments, and neither does the "logic 
of states" L* or the system of states H*. According to the fundamental 
definition above, the space uses ~h, which is a Boolean field of  subsets 
generated from a subset of  the states determined by initial condition h. 

2.2. Classical Probabilities 

We now show that the familiar probability assignments of classical 
mechanics can be derived from the fundamental definition as a special case. 
Classical theories do not use the strongly conditional probabilities, as we 
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now proceed to show. However, before demonstrating this it is useful to 
introduce the traditional sense of  "conditional" probability: 

prObh(Ct ̂  13) I probh(13) where 
probh(13) 4 : 0  

Definition: prObh(Ct l 13) = 

0 otherwise 

We call this the weak conditional (or "rat io" probability) to distinguish it 
from the strong dependence in the fundamental definition on initial condition 
h. It follows from the definition that probh(~ I t3) = ~h(S~' U S~) I ~h(S~,) if 
S~ 4: O,  and = 0 otherwise, and so this does correspond to the traditional 
notion of  conditional probability used in standard probability theory. 

We can also derive an "unconditional" probability assignment as a 
special case of  the fundamental definition. In any theory T, logic L, a E L: 

Definitions. (a) The trivial valuation ho is such that Th0 = {~: ~ct}. (b) 
The unconditional probability of a,  prob(a) = probho(c~). 

The trivial valuation finds only logical truths of  L to be true and the "uncondi- 
tional" probability is conditional on this valuation. 

We are now ready to consider the special properties of  classical probabili- 
ties. First we show for any set H of  valuations: 

Lemma 2.1. In a classical theory S = <-. In a quantum theory S 4: <-. 

Recall that in a classical theory all maximal valuations are bivalent, and so 
in a classical theory where h2 S hi condition (SI) on S ensures that qh 3 such 
that ETh3 = EThl U ETh2 by the existence of bivalent maximal valuations, 
and so by ($2) h 3 - h2 and hi --< h2. Thus in a classical theory h2 S hi ¢=> 
h~ --< h2 ¢:~ ETh~ C ETh_,. However, in the general quantum case states are 

not bivalent and so we cannot guarantee the existence of  such an h 3 and so 
S does not coincide with --<. 

Lemma 2.1 establishes the very special property of  classical theories, 
that we can regard successive descriptions of the same reality as "building up" 
truth-sets until the final two-valued state is reached, uniquely characterizing a 
reality within the theory. In classical theories we can assume that successive 
descriptions of  the same reality at the same time to simply retain all truth- 
values until a unique bivalent state is achieved to characterize this reality. 
However, in quantum theories we do not have bivalent valuations and so in 
these theories succession and containment do not coincide. This means we 
cannot assume in quantum theories that all truth-assignments are retained in 
subsequent descriptions of the same reality at the same time to, and so 
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successive valuations do not simply "build up" truth-values. Two different 
states may be used to describe the same unchanged reality at time to. A wff 
(including an elementary predicate) which is true in one may be left undecided 
in the other, and the unique correspondence between realities and maximal 
valuations is lost in quantum theories. 

An important consequence of Lemma 2.1 is the following: 

Lemma 2.2. For any h c H, ca ~ L, ~/h the characteristic wff for h: In 
a classical theor 3, probh(ca) = prob(cal2th). In a quantum theory, probh(ca) 
4: prob(cal'yh). 

In classical theories the strong and weak conditional probabilities coin- 
cide, in nonclassical theories they do not. For by Lemma 2.1, in a classical 
theory S~, = {h*: h* S h and h*(ca) = t} = {h*: Th C Th* & h* (ca) = t} 
= S ~^~h and so prob/,(ca) = ~h(S~,) = ~(S~^~)1~(5 wh) = prob(c~L'yh). In quan- 
tum theories, however, where S 4: <-, ETh (E ETh, when h* S h, and so 
S~ 4: S ~^~h and hence probh(ca) 4: prob(cal',/h). 

It follows from Lemma 2.2 that in the special case of  a classical theory 
only a single probability space is needed to generate all probability assign- 
ments of  the theory. This is the "trivial" probability space (So, ~o, ~o) = 
(H*, ~o, ~0), i.e., it is derived from H*, the set of  all states of  the theory. 
However, although this space can be defined in any theory and used to 
generate the "unconditional" probabilities of any theory, in nonclassical 
theories it simply does not have the role of  a fundamental "event space" 
from which all of the other fundamentally conditional probabilities can be 
derived. It has this special property only in classical theories, by Lemma 
2.2. In quantum theories probabilities conditional on nontrival h cannot be 
expressed as standard weak conditional probabilities on (H*, ~0, I J-0), the 
"unconditional" space of the theory. The strong conditionals do not coincide 
with weak conditionals, and a single probability space cannot generate all 
conditional probability assignments of the theory. 

It follows from the fundamental definition that in classical theories ~0 
is just the Stone space H* of the "logic of states" L* discussed above. So 
in this special classical case L*, H*, and 3o are all equivalent. This had led 
to the assumption that the logic, states, and the probability field of  a theory 
coincide, and has made the lack of a single "event  space" in quantum 
mechanics particularly mysterious. However, here we see the mystery 
resolved. The "logic of  states" L* and the system of  maximal valuations 
H* are not fundamental to probability structures. Instead they happen to 
coincide with field ~0 only in the special case of theories with bivalent states. 
In a theory where states are not bivalent, L* and H* are not Boolean, they 
do not therefore represent a probability "field," and there is in fact no single 
space to generate all the probabilities of a theory. Instead these probabilities 
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will be strongly conditional, defined over a probability space which is gener- 
ated from a subset of states depending on the initial condition. 

2.3. M e a s u r e m e n t  

Probability assignments in mechanical theories are most often concerned 
with the outcome of  measurement and we now show how measurement can 
be logically analyzed and formally expressed. The physical and metaphysical 
nature of  measurement will not be considered, i.e., we do not attempt to answer 
the questions of what the metaphysical or physical nature of  measurement is, 
of  how and why it helps us to describe reality. We consider here only its logical 
characteristics, accepting that measurement is some process, in principle 
definable, which provides truth-values of  elementary predicates in order to 
describe a real system at a particular time. In fact measurement of a particular 
magnitude M results in the assignment of  truth-values to elementary M- 
predicates, and so we use M for a magnitude or a measurement of the 
magnitude without ambiguity. The key logical characteristic of a measurement 
M is that it results in truth-value assignments to M-predicates in the theory. 

Note particularly that no physical assumptions are made about the mea- 
surement process and in particular there is no assumption about disturbance 
of a system during measurement nor even about time advancing during the 
measuring process. We assume here that measurement is " ideal"  in the sense 
that it really has no physical properties at all. It may be a fact of  the world 
that all measurement disturbs and that all measurement takes time, but these 
aspects are ignored here because we are concerned solely with the logical 
characteristics of  measurement, to see what follows from this logical charac- 
terization alone. 

We can now sum up the logical properties of measurement in the follow- 
ing way. In any theory T: 

Definition. After a measurement of magnitude M, a system is described 
by hM e H such that: 

(M 1) hM(p) = t for some M-predicate p, i.e., some p = (M, A), p e L. 
(M2) hm S h. 

Condition (MI)  expresses the requirement that a measurement of magnitude 
M finds an M-predicate true, i.e., it designates a value or range of  values as 
true of  magnitude M on the system measured. Condition (M2) expresses the 
assumption that the measurement is ideal in the sense that the system described 
before and after the measurement is assumed to be the same real system at 
the same time to. 
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We are now interested in the properties of  measurement and in particular 
properties of  valuation hM which can be derived from this logical characteriza- 
tion. First we need the terminology: 

Definitions. (a) The trivial M-predicate is 1M = (M, VM). (b) The outcome 
of a particular measurement of  M will be some p = (M, A) such that hM(p) 
= t and there is no q = (M, A*) where h(q) = t and A* C A. 

Predicate 1M assigns the whole value-set I'M to M. It is trivial for M in the 
sense that it will be true when any other M-predicate is true and hence by 
(M1) will be true after any measurement of  M. For we know for any p = 
(M, A), since A C I'M, ~ (p D 1M) by definition of  valuation. The outcome 
of a measurement M is the "least"  M-predicate which is found true after a 
measurement of M. Note we do not require measurement to be "ideally 
precise" since we do not require that measurement must result in assignment 
of truth to an atomic proposition (M, r) for real number r in I'M. Instead any 
M-predicate may be an outcome of M. 

From the logical properties above one can now conclude that: 

Lemma 2.3. In a quantum theory the state describing a system will 
change after measurement; in a classical theory this is never the case. 

This result follows simply from conditions (M l) and (M2) and Lemma 2.1. 
Where succession is containment and states are bivalent, one can assume 
that the valuation hM which describes the system after measurement, and the 
initial condition h, are both contained in the same bivalent state and hence 
one assumes that although the valuation changes after measurement, the 
underlying state is unchanged. In this sense measurement in classical theories 
can always be assumed "non-disturbing" to earlier truth-value assignments. 
However, in a quantum theory the situation is quite different. Where maximal 
valuations are not bivalent there is in general no state h* which contains h 
and hM, and hence the state hI describing the system before measurement, 
which contains h, may be different from the state h2 describing the system 
after measurement, which contains hM. This result stems solely from the 
logical properties of measurement together with the lack of  bivalent valua- 
tions. Where there are no bivalent valuations, measurements lead to drastic 
but predictable changes in state reflecting the fact that new information is 
introduced which may not be combined consistently with existing truth- 
values. The changes are predictable in the sense that they depend on M, the 
magnitude measured. 

Probabilities conditional on measurement are in fact weakly conditional 
on the trivial M-predicate. That is, for any theory T, h ~ H, ~ ~ L: 

Lemma 2.4. The probability that e~ is true if a system initially described 
by h is measured for M is given by prob~(c~:M) = probh(c~l IM). 
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The probability of  finding et true after a measurement of M on a system 
initially described by h is the strongly conditional probability of c~ given 
initial h, (weakly) conditional on the trivial M-predicate being true. For it 
follows from (M1) that some M-predicate must be true after M, so 

probh(ecM) = i~h(S~'^p)llxh(S~) = probh(edp) 

for arbitrary M-outcome p. But as we saw above, for any p = (M, A), A C__ 
VM and so 

~zh(St, )I~h(Sh ) = probh(al IM) probh(ccM) = ~,̂ tM tM 

Only those valuations which assign truth to an M-predicate, and hence find 
1M true, are "counted"  in the probability assigned to any wff after magnitude 
M is measured. 

We pause briefly to consider how measurement-specific probability 
assignments can be expressed in a modal extension of  L. A magnitude- 
dependent modal operator D M can be defined with a formation rule analogous 
to that already given for D (in Section 2.l above), and the following valua- 
tion rule: 

(Vt3M) h ( t3~ )  = t i f fh* (a )  = t Vh*: h* S h and h*(IM) ---- t. 

Wff  a is certain after measurement o f  M according to h, if et is true in 
all valuations accessible from h which decide the trivial M-predicate, or 
equivalently which find some M-outcome true. Clearly in general OM does 
not coincide with operator t~ since in general there will be states that are 
successors of  h which do not decide 1M, for in general nonclassical states 
are not bivalent. 

Lemma 2.4 can be used immediately to establish that in classical theories 
some very special results obtain for measurements of two different magnitudes 
M, N performed in turn on a system initially described by h. We let pro- 
bh(a:M)([3:N) be the probability of  first finding e~ true after a measurement 
o f M o n  a system initially described by h, then finding [3 true after a subsequent 
measurement of N on the same system (still at the same time to). Then: 

Lemma 2.5. Vh ~ H, a, f5 ~ L, magnitudes M, N: In a classical theory 

probh(o~:M)([3:N) = probh([3:N)(c~:M) 

In a quantum theory 

probh(ccM)([3:N) 4: prob~,([3:N)(ecM) 

According to this result, the order of  measurements makes no difference 
to sequential probabilities in classical theories, but in quantum theories the 
probability of  a sequence will depend on the order. To simplify the terminology 
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we set SM = ShM and S M = S IM. Then in general probh(ccM)(t3:N) = 
I~h,(S~), where h* E S~t, while probh(13:N)(a:M) = IXh,(S~t) where h# ~ S~ 

and these measures and sets are simply not in general the same. Only in 
classical theories by the lemmas above do we get the result that for arbitrary 
c~, M, S~t = S M ~̂ and so in this special case 

probh(a:M)(13:N) = },L(Sa^M^B'vh)I~(S "th) = probh([3:N)(ccM) 

i.e., the probability of a sequence coincides with the probability of a corres- 
ponding conjunction, and since the order of conjuncts is irrelevant in the 
logic L the order of items in a sequence is irrelevant to the sequential 
probability in a classical theory. However, in the general case, where probabili- 
ties are strongly conditional, sequences cannot be reduced to conjunctions 
and the order of items in the sequence will be crucial to the probability. 

So this analysis does yield features of the quantum transitional probabili- 
ties as well as the familiar classical conditionals. States change after measure- 
ment in a drastic but well-defined way which depends on the magnitude 
measured (Lemma 2.3). And probabilities in quantum theories depend on 
the order in which magnitudes are measured in a sequence (Lemma 2.5). We 
have seen that these results are consequences solely of logical properties of 
measurement. Since classical and quantum theories differ only in the structure 
of their valuations, this difference alone must account for these very different 
properties of measurement in classical and quantum mechanics. 

2.4. Phase Space and Hiibert Space 

We now relate this logical analysis to the formalism actually used in 
mechanics, i.e., to the classical phase space and to the Hilbert space representa- 
tion of quantum theories. 

Classical phase space is a space of "points," each corresponding to 
precise values for each primitive magnitude in a theory. For example, a 
classical theory describing a system with just one degree of freedom has a 
phase space of ordered pairs (qn, P~), where the q,, Pk are Q- and P-values, 
respectively. Strictly speaking these "points" in phase space are parametrized 
by time, so that the system at time to will be described by an ordered pair 
of position and momentum values (q(to), p(to)).  In general a system with n 
degrees of freedom is represented by a 2n-dimensional phase space of points 
of form (ql ( t )  . . . . .  qn(t), p l ( t )  . . . . .  pn(t)).  The probabilities of classical 
mechanics are probability measures over the field of subsets of such a phase 
space. The magnitudes (i.e., "observables") of the theory are random vari- 
ables over the phase space mapping the "points" of phase space to real 
numbers. For example, magnitude Qi (representing position in the ith direc- 
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tion) is a function taking point (ql ( t )  . . . . .  q,,(t), p j ( t )  . . . . .  pn(t))  to its ith 
component qi(t). 

It is easy to see that the classical phase space representation of classical 
mechanics can be derived from the logical analysis above. A classical theory 
has all maximal valuations bivalent, so a classical state h corresponds to 
a truth-value assignment to all elementary predicates including all a t o m i c  
predicates of  form (M, r) for r in VM. Thus h corresponds to the "point" (rl, 
r2 . . . . .  r,,), where the r; are appropriate M;-values, ri ~ VM;. So the set of all 
classical states H* and the set of  points in phase space exactly correspond, 
as do the field of subsets generated from these sets. In a similar way we can 
also represent magnitudes as random variables over the bivalent valuations 
so that M takes state h to the M-value in the atomic M - p r e d i c a t e  which is 
true in h, i.e., M: H ~ ,~)t defined by M ( h )  = r;, for r~ E VM such that h ( M ,  
r;) = t, for h a state. All features of  the classical phase space can be derived 
in a similar way from the logical analysis where a theory is classical. 

It is well known that the phase space representation of classical mechan- 
ics is impossible in quantum theory. It is now accepted that theories of 
quantum mechanics are represented using the formalism of separable complete 
Hilbert space. According to this representation the "pure states" of  the 
quantum theory correspond to normed unit vectors in a complete separable 
Hilbert space associated with the theory. Quantum "mixtures" are probability 
distributions over the pure states. The magnitudes of a quantum theory are 
represented by special (linear Hermit;an) "observable" operators on the 
Hilbert space. The special properties of  these operators associate them with 
a particular set of "axes" or an analogous set of  special subspaces in the 
space, each corresponding to an element in the spectrum of A, i.e., to a 
member of its value-set. 

The "decomposit ion" of  any vector qb in the Hilbert space in terms of 
its components along the axes or in the subspaces of  the observable operator 
generates the probability assignments according to initial state + of  the 
corresponding outcomes of  measuring the magnitude. In the simplest case 
of operator A with,discrete distinct eigenvalues, A is associated with eigenbasis 
{oti} and corresponding eigenvalues ai, i.e., A = ~,fl,~ti, and any vector ~b in 
the space can be expressed in terms of  components along the eigenvectors 
in this eigenbasis, i.e., dp = Ni(ct;, +)ix; for any vector ~b. It is the "size" of  
the component of  qb along ix;, I(ixi, ~b)l 2, which gives the probability that after 
a measurement of A the value of A will be ai, i.e., that the system will be in 
state ot;. 

This analysis can also be stated in terms of  projection operators. Each 
subspace of  Hilbert space is associated with a corresponding projection opera- 
tor, and in the simple case above the "decomposit ion" of  vector + is reex- 
pressed by noting that (0/./,  (~))0£ i = Pc~i~, i.e., the component of ~b along 0¢- i 
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is the projection of qb onto the one-dimensional subspace (li, so that the 
probability of finding value ai given initial state vector qb is I(cti, qb)l 2 = 
][P,,id~]] 2. This reexpression is useful for the general case where A may have 
continuous or degenerate spectrum. The Spectral Theorem lets us express 
any observable operator A in terms of the decomposition A = f~:~ k dE(k), 
where the E(K) are projection operators with properties analogous to those 
of a basis set and the k are contained in the spectrum of A. In this case the 
probability that the value of A will be found in the interval h2 - hi is prob4(h2 
- hi) = lIE(k2) - E(kj)qb[] 2, i.e., as with the simple case, the probability that 
A has a value in interval (k2 - kt) of its spectrum is given by the "size" 
of the projection of qb into the subspace associated with this interval. 

To understand the implications of this representation we need only 
appreciate the case of simple A with discrete eigenvalues a i and corresponding 
eigenvectors ai- As discussed above, quantum theory tells us that the probabil- 
ity of finding value ai after a measurement of A on a system initially described 
by qb is prob+(ai:A) = I(d~, ~ i ) [  2 = ][Pait~][ 2. According to Born's interpretation 
of the quantum state, this is the most  that d~ can tell us about  magni tude A. 
It follows for example that value ai can be predicted with certainty only in 
the case where ~b coincides with ai, since only in this case will prob~,(a,-:A) 
= I(~b, 0)1 l = 1. Yet even this state will only make statistical predictions 
about the outcome of the measurement of other observables, for in general 
prob,~(bk:B) 4:1 where B :~ A. Quantum states are irreducibly statistical. 

Although this is a simplification of the mathematics, we see here the 
heart of the problem of understanding quantum probabilities. Classical phase 
space gives way to a vector space representation where probability assign- 
ments are generated by the inner product, the metric on the space, so that 
the "size" of projections of the vector into particular subspaces associated 
with the observable operator gives the probabilities that corresponding values 
of the observable hold. This mathematical formalism is intractable to represen- 
tation in terms of a single "phase space" and hence has seemed intractable 
to analysis in terms of traditional probability measures. However, the present 
logical analysis provides exactly this understanding of quantum probabilities. 

First note that the quantum states d~, i.e., the pure states or mixtures 
represented by vectors in Hilbert space, correspond to (not necessarily maxi- 
mal) valuations h of a quantum theory in the logical analysis. According to 
this analysis there is a correspondence between the Hilbert space representing 
quantum theory T and the system H = (H, -<, i )  of valuations of T. The 
"pure" states of the theory correspond to valuations which are characteristic 
of the atomic predicates. For example, the "pure" state eti, an eigenvector 
of simple observable operator A corresponding to eigenvalue ai, corresponds 
to valuation hp characteristic for p --- (A, ai). Quantum "mixtures" are proba- 
bility assignments to the pure states and these, too, will correspond to valua- 
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tions of the theory, but to valuations which are not characteristic of  atomic 
predicates. 

We have seen that probabilities are generated in Hilbert space by the 
projection of the initial state vector onto special "axes"  or subspaces associ- 
ated with observable operators. In the simple case this is the projection onto 
the eigenvectors of the observable operator. According to the logical analysis 
these projections, i.e., the size of components of ~b along the axes of A, 
represent the strongly conditional probabilities of the fundamental definition. 
The probability prob+(ai:A) = I(qb, Oti)l 2 = IIP=,+II 2 in Hilbert space corresponds 
to probability prob+(p:A) for p = (A, ai) i.e., to the probability prob+(hp:A) 
in the subspaces of H. According to this correspondence, the Hilbert space 
projections in the decomposition of qb in terms of A, which give a measure 
of the "overlap" of ~ with each of the eigenvectors, correspond in the logical 
analysis to measures of the "overlap" in the sense of "consistency" between 
initial valuation ~b and the characteristic atomic valuations associated with 
A, that is, to the proportion of successor states of qb deciding la which contain 
these atomic valuations. There is therefore an analogy between the "size" 
of projections into subspaces of Hilbert space and the measures of subspaces 
provided by the fundamental definition over H. 

We now check that in some simple cases the logical analysis does indeed 
concur with the Hilbert space representation. For example, suppose qb is 
actually an eigenvector c~; of simple operator A; then quantum mechanics 
tells us that in this case prob+(ai:A) = I(~b, dp)l 2 = Ile,,/ail[ 2 = 1. Furthermore, 
quantum mechanics tells us that if ak is some other value of A, i.e., i 4: k, 
then since in this case (e~, ai) = 0, also prob+(ak:A) = 0. We now show that 
similar results hold according to the logical analysis. 

L e m m a  2.6. If p = (A, ai), q = (A, ak), for i :/: k, and p, q e L, then 

probp(p:A) = I and probp(q:A) = 0 

If the initial valuation describing a system is characteristic of an atomic 
predicate, then there is probability 1 that a measurement of this magnitude 
will result in this atomic value being found true of this system, and there is 
probability 0 that some other value of the magnitude is found true after the 
measurement. Here probp = probhm i.e., by assumption of this special case 
the initial condition is the characteristic valuation h r where p = (A, ai). 
According to the fundamental definition and the terminology introduced in 
Section 2.1, probp(p:A) = I~(Spp"A)Itx,(S A) (where for simplicity we let la = 
A), by Lemma 2.3. Then since ~(p D la) for any A-outcome p by definition 
of valuation, by condition ($2), S~ "a for arbitrary p is equal to S a and so 
probp(p:A) = 1. Similarly, if q = (ak, A), k 4: i, then probp(q:A) = ~p 
(sq"A)I~p(sA), but since hp(p) = t, h , (q)  = f b y  definition of valuation, and 
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so by (S1) there is no h* S hp such that h* (q) = t, and so Sg "a = 0 ,  and 
probp(q:A) = 0. Thus the logical analysis agrees with the quantum results in 
these cases. 

It also follows from Lemma 2.6 that in the case of classical theories, 
where all maximal valuations are bivalent, every probability assigned by a 
state of the theory will be either 1 or 0, i.e., classical states are dispersion free. 

We now end this section by giving a blow-by-blow account of how each 
of the key peculiarities of the quantum transitional probabilities which arise 
from their mathematical representation in Hilbert space is also a peculiarity 
of the strongly conditional probabilities and can therefore be explained on 
this analysis. The numbered points are taken by some authors to be postulates, 
axiomatic to acceptance of quantum mechanics. Certainly all are fundamental 
and are usually understood as representing the intractable, irreducibly "non- 
classical" features of quantum theory. We now show how each is explained 
according to this logical analysis. 

1. Vectors in Hilbert space represent the quantum states: This was the 
subject of discussion above. We have seen that classical theories use a single 
probability space to generate all their probabilities, but in quantum theories, 
where maximal valuations are not bivalent, a phase space representation is 
not possible, as the single "unconditional" probability space cannot generate 
all the (strongly) conditional probabilities of the theory. According to the 
logical analysis the probabilities of a quantum theory are generated from the 
Kolmogorov probability spaces of the fundamental definition, and hence the 
theory will be represented by the system H = (H, --<, ±) of valuations over 
which these probability spaces are defined. Already we have seen some 
striking similarities between this analysis and the Hilbert space representation 
of quantum mechanics--predictions vary with the magnitude measured 
(Lemma 2.3), probabilities depend on the order of magnitudes in a sequence 
of measurements (Lemma 2.5), and in some special cases the probabilities 
coincide (Lemma 2.6). 

There are in fact some natural analogies between the structure of H and 
Hilbert space. Already we suggested that the vectors representing "quantum 
states" in Hilbert space correspond to (not necessarily maximal) valuations 
of a theory--the unit "rays" in Hilbert space corresponding to valuations 
characteristic of the atomic predicates of the theory, and hence to these atomic 
predicates themselves. The fundamental definition of probability (Section 
2.1) also provides a kind of "metric" on H, since it associates with valuations 
(ht, h2) a real number probm(h2), which is a measure of the "overlap" or 
consistency of the two valuations--a measure of the extent to which the 
successors of the first valuation agree with truth-assignments made by the 
second. This is in obvious analogy to the Hilbert space inner product and 
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especially its expression in terms of projections in the subspaces of Hilbert 
space. 

A full and accurate analysis of Hilbert space, and of system H, is needed 
to demonstrate that all features of the Hilbert space representation have a 
counterpart in the logical analysis. Here we simply indicate the main features 
of this analysis in the points below. In Section 3 we analyze the correspondence 
between "properties" and subspaces of Hilbert space, arguing that contrary 
to accepted opinion, quantum properties are not nondistributive, a conclusion 
which also supports the view that H = (H, -<, l )  essentially corresponds to 
the Hilbert space representing quantum mechanics. At the very least this 
discussion shows that clear analogies exist between H and Hilbert space, and 
this shows how a structure such as Hilbert space which is not Boolean can 
represent the predictions of mechanics. 

2. Observables as linear Hermitian operators on the Hilbert space: 
According to quantum theory, magnitudes are represented by observable 
operators which "pick out" special subspaces of states (an eigenbasis of 
vectors in the simple case), so that any other vector can be broken down into 
components in these subspaces and the "size" of these components deter- 
mines the probability that the corresponding value or interval in the spectrum 
obtains according to this initial state. The logical analysis is analogous to 
this, since here, too, each magnitude of theory T corresponds naturally with 
the valuations that are characteristic for M-outcomes. In the simple case of 
magnitude M with discrete distinct M-values, M "picks out" the ("eigen- 
basis" of) valuations characteristic for its atomic predicates, i.e., set {hi}, 
where each hi is characteristic for Pi = (M, ri), I",- E VM. Furthermore, the 
probability assigned by initial d~ to value ri of M will according to the 
fundamental definition be a measure of the proportion of successor states of 

deciding M which contain hi, an analogy to the Hilbert space representation 
according to which the probability is given by the "size" of the projection 
of d~ along this eigenvector. In the case where a magnitude is not simple, 
i.e., the spectrum "is degenerate or continuous, this logical analysis can be 
restated in a way that is exactly analogous to restatement in the Hilbert space 
representation, since in this case a family of "subspaces" in H can be "picked 
out" corresponding to valuations characteristic of nonatomic elementary 
M-predicates. 

The Hilbert space analysis of magnitudes as operators on vectors can 
also be restated in the logical terms, for we can define "operator M" over 
H as taking valuation h to another valuation h r which is characteristic for 
the "least" M-predicate consistent with h, i.e., M maps h to hp for p ~ L, 
h*(p) = t for h* in Sh, and p = (M, A), where there is no A' C A such that 
p' = (M, A') and h'(p') = t for h' in Sh. We can in the same sense represent 
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M as a kind of generalized "random variable" over H, for M also corresponds 
with a mapping which associates with each h in H, the Borel set A of 
"allowable M-values," i.e., M takes h to A where p = (M, A) is the "least 
M-predicate" defined above. 

3. The strongest statement that can be made in state ~ is that the 
measurement of A yielding ak is I(c~k, ~)lZ: It follows from the logical analysis 
that in quantum theories, where maximal valuations are not bivalent, only 
statistical assertions are possible from + about the outcome of a measurement, 
since in general the predicate (A, ak) is not decided in ~b. If it happens to be 
the case that h(A, ak) = t, then in this case prob+((A, ag):A) = 1, as we have 
seen in Lemma 2.6. But since in a quantum theory even if qb is maximal it 
is not a bivalent valuation, then for some other magnitude B it will be the 
case that S~, B'b~ 4: S~, so that in this case prob,((B, bk):B) ~ 1. Thus state 
will generally make only statistical assertions about values of the other 
magnitudes. The logical analysis agrees that quantum theories, which do not 
have bivalent states, will be irreducibly statistical. 

4. Measurement causes drastic changes in the state of a system: In 
quantum mechanics we know that regardless of the state vector before mea- 
surement, afterward it will coincide with the eigenvector corresponding to 
the eigenvalue obtained in the measurement. This coincides exactly with the 
logical analysis, since a new state after measurement must contain the valua- 
tion hM, characteristic of the outcome of the measurement M. Furthermore, 
as we saw in Lemma 2.3, the change from h to hM in quantum theories will 
generally involve a drastic alteration of state. In classical theories there may 
be a change in valuation, but not of state. 

5. There are incompatible observables, and uncertainty relations: Where 
maximal valuations are not bivalent there must be magnitudes M, N such 
that no valuation h decides all M- and all N-elementary predicates (for 
otherwise the maximal valuations would be bivalent). In these cases the order 
of magnitudes measured will determine probabilities in a sequence (shown 
in Lemma 2.5). Furthermore, where states are not bivalent, there will also 
be uncertainty relations, as one can easily show. If we define incompatible 
magnitudes M, N as magnitudes whose predicates are not decided together 
in any valuation, then we can derive the logical analogue of the uncer- 
tainty relations: 

Lemma 2.7. If M, N are incompatible, p any M-predicate, q any N- 
predicate, then as probh(p) --* 1, prObh(q) ~ 0 any h in H. 

As the probability according to h of an M-predicate p approaches 1, the 
probability according to h of an incompatible N-predicate q approaches 0. 
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For as probh(P) ~ 1, Sf, ~ Sh by the fundamental definition and since M, N 
are incompatible there is no valuation which finds both p and q true, and so 
as Sf, ~ Sh, $7, ~ Q, and hence prob~(q) ~ 0. 

We see from this discussion that if the logical analysis is accepted, 
all the supposedly intractable peculiarities of quantum probabilities can be 
explained. For the first time we have a framework for understanding the 
quantum probabilities as probability measures over a probability space in a 
way that gives clear meaning to the Hilbert space representation. This analysis 
rests on clear logical foundations which take the strong conditional (i.e., the 
relative or transitional probabilities of quantum mechanics) as the fundamental 
probabilities, showing how the classical probabilities arise as a special case. 

We therefore agree for example with a recent author that "the novelty 
[of quantum mechanics] is more related to the broadening [of probability] 
theory than to its falsification" (Constantini, 1993). We agree with this author, 
too, on the need for "a more accurate study" of the foundations of quantum 
probabilities than is usually given, a need he clearly articulates and supports 
with specific examples in his paper. 

Furthermore, there are no outrageous philosophical assumptions or impli- 
cations of this view. Here we made no outside appeal to metaphysics, and 
required no drastic changes to accepted analysis of logical operations or of 
probability theory. Instead we have simply proposed that the probabilities of 
any mechanical theory are measures over a field of sets which is not generated 
from the entire set of states in the system, but instead from a subset dependent 
on the initial condition. In classical theories we showed this can always be 
reduced to a "weak"  conditional on the full state space, but in quantum 
theories such a reduction is not possible. This strongly conditional nature 
of quantum probability explains the peculiarities of quantum transitional 
probabilities. We have seen that the Hilbert space representation can be 
naturally viewed as a representation of these strongly conditional probabilities. 

The logical analysis thus has major implications for our understanding 
of quantum mechanics, some of which will be explored in the next section. 
We see, for example, that on this view the logic used by all theories is the 
same, and like the valuations and states of any theory, this logic has the 
underlying structure of a distributive, though only relatively orthocomple- 
mented lattice. Furthermore, we have seen that it is solely a difference in the 
structure of  their maximal valuations, specifically the lack of bivalent states, 
which leads to the use of strongly conditional probabilities in quantum theories 
and hence generates all their nonclassical peculiarities. 

3. R E V I E W  

3.1. Distributivity and "Quantum Logic" 

One important consequence of the present view is that the propositional 
logic used by classical and quantum theories is essentially the same, with 
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the structure of  a distributive though only relatively orthocomplemented 
lattice. Furthermore, the structure of  valuations and hence of  quantum states 
is also distributive and relatively orthocomplemented. It follows that 
according to this analysis the Hilbert space representation of  quantum states 
does not, as is widely believed, impose a nondistributive structure on quantum 
theories. This is contrary to present accepted opinion, and so the arguments 
which supposedly support nondistributivity will now be closely examined. 

The present wide support for the view that quantum theories are nondis- 
tributive is surprising since distribution is a fundamental property of deduction 
and thus of science itself. It is also a key mathematical property of set 
inclusion and although nondistributive "or thomodular"  lattices have been 
widely studied, they have none of the mathematical simplicity or significance 
of the distributive structures. Furthermore, nondistributivity poses great prob- 
lems for the interpretation of quantum mechanics since it leaves us in doubt 
about our own ability to reason about, or draw deductions from, quantum 
theories. And lastly support for this view is surprising given how little mathe- 
matical effort has been expended on proving nondistributivity of  quantum 
structures, especially when compared with the really huge effort which has 
now been expended investigating nondistributive alternatives. In this section 
we first dispatch what logical argument there is to support a nondistributive 
"quantum logic," then try to reconstruct the real basis for the nondistributive 
view, which apparently lies in the Hilbert space representation of  quantum 
"properties." 

The argument that quantum logic is nondistributive was first proposed 
in a joint paper by Birkhoff and von Neumann, entitled "The  Logic of  
Quantum Mechanics" (Birkhoffand von Neumann, 1936). After some discus- 
sion of  the issues the authors purport to show that distribution fails by 
considering a single experimental situation which they describe as follows: 

That [distribution] does break down is shown by the fact that if a denotes the 
experimental observation of a wave packet ~, on one side of a plane in ordinary 
space, a' correspondingly the observation of tp on the other side, and b the 
observation of tp in a state symmetric about the plane, then (as one can readily 
check) b N ( a U a ' )  = h A •  = b > ©  = ( b n a )  = ( b n a ' )  = ( b n a )  O 
(b n a'). (Birkhoff and von Neumann, 1936, p. 10) 

Symbols • and © represent the logically true and logically false proposition, 
respectively. A detailed treatment of  this argument is given in Garden (1984, 
pp. 143ff). Here we simply note that this logical argument clearly relies on 
the assumption that (a U a ' )  = I ,  i.e., that this disjunction is logically true. 
According to our own analysis this assumption is not accepted and so the 
argument that distribution fails breaks down. 

Almost every discussion of the "failure" of distribution in quantum 
logic relies on considering this special case where two complements are 
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combined, a fact which should at least raise suspicions that it is the properties 
of  negation, not implication, which are at issue. Once lattice complementation 
or Excluded Middle are assumed, it is easy to deduce the failure of  distribution 
as shown above. But in all such examples one can just as well argue that it 
is a lack of full lattice complement, i.e., a weaker negation, and not nondistrib- 
utive implication, which causes the Boolean identity to fail. In fact since 
distribution is fundamental to a partial ordering and hence more important 
to logic by far than a strong negation operator, we should more properly use 
this argument as a reductio proof that Excluded Middle fails! 

Birkhoff and von Neumann's argument is specifically presented in logical 
terms, and it is analyzed in these terms above--negat ion does not obey 
Excluded Middle, thus (a U a ' )  4: • and the failure of distribution cannot 
be derived. However, we often see similar arguments which appeal explicitly 
to set-theoretic rather than logical principles, appealing in particular to sup- 
posed properties of set combination in Hilbert space. Consider, for example, 
the following argument from Jauch, typical both for its brevity and also for 
the use of one single case involving complements to establish the "failure" 
of  distribution: 

Let us examine a very special case which displays the characteristic features of 
the general situation. We take a two-dimensional Hilbert Space H and choose 
two one-dimensional subspaces M and M ± for instance. Let N be any one- 
dimensional subspace :~M, 4:M1; then we have N O (M U M ±) = N n H = 
N, but N n M = Q~ = N n M I. We see therefore that the operations U and O 
do not always satisfy the distributive law as they do in the case for sets. (Jauch, 
1968, p. 27) 

If this were expressed in logical terms, it would be exactly analogous to the 
example of  Birkhoff and von Neumann above, and one would simply point 
out here, as there, that (M U M "L) = H is assumed, and that were this 
assumption to be dropped, distribution would not fail. However, if the argu- 
ment is taken at face value, i.e., as an argument about combining subspaces, 
then it, too, relies on the unwarranted assumption that (M U M ±) = H. For 
although M, M J- .are orthogonal in the Hilbert space, i.e., (M n M ±) = Q, 
we know also that N e H, and yet N ~ (M U M ±) and so (M O M "L) 4: H. 
Thus N n (M U M z) :~ N n H, and distribution does not fail. 

Elsewhere in his book Jauch does discuss the logic of  mechanical theories 
and in fact adopts the following as a postulate or axiom: "The  propositions 
of a physical system are a complete, orthocomplemented lattice" (Jauch, 
1968, p. 77). This postulate is presented in spite of earlier discussion which 
includes the claim that "We introduce here a strong negation denoted by 
'false' and distinguished from simply 'not true' " (Ibid., p. 76). By explicitly 
adopting Excluded Middle, however, as a principle of negation [a few sen- 
tences previously (Ibid., p. 76)] and then, as we see above, postulating that 
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the logic is a fully complemented lattice, Jauch actually ensures that such a 
distinction cannot be made for negation in his system. And of course once 
Excluded Middle is accepted, and hence full lattice complementation postu- 
lated, the failure of distribution will inevitably follow by arguments similar 
to those above. Jauch's justification for this postulated negation seems to 
rely solely on the fact that a 0 and a 1 element exist in the lattice representing 
a logic, since the 0 represents a logically false and the 1 a logically true 
proposition, respectively. We also agree on this point (see Section 1.2 above), 
but this does not of course show that negation must be represented by full 
complementation with respect to these 0 and 1 elements. Instead it has been 
argued here that negation is represented by complementation relative to a 
subsystem of the lattice, i.e., relative to the 0 and 1 elements of a wff's 
logical "context." 

To really understand why lattice complementation or equivalently the 
Excluded Middle is almost invariably assumed as an axiom in discussions 
of mechanics, one needs in fact to look beyond these logical or set-theoretic 
arguments to the representation of quantum theories in Hilbert space. In 
assuming (M U M ~) = H in his example, Jauch is perhaps appealing to the 
fact that a measurement of M on a system initially described by + must find 
the system in one of  just two eigenstates of an associated operator PM, i.e., 
Pro4) = qb or PMcb = 0 (see section 2.4 above). It is this fact also perhaps 
which motivates Birkhoff and von Neumann's assumption that (a U a ' )  is a 
logical truth in quantum logic, i.e., that (a U a ')  = m; see above. Yet careful 
accurate analysis does not support their assumptions. Contrary to almost 
universal opinion, a careful analysis of the Hilbert space representation of 
quantum properties does not establish that the propositions, properties, or 
subspaces are nondistributive. 

To assess the arguments we need a careful examination of the relations 
among observables, "properties," projections, and subspaces of Hilbert 
space. There is no better nor more authoritative work on this subject than 
von Neumann's own great book (von Neumann, 1955). 

Recall that any observable operator A can be decomposed according to 
the Spectral Theorem into associated subspaces--in the case of simple A 
these are the eigenvectors {ai} of A and in the more general case this is a 
decomposition into analogous subspaces associated with intervals in the 
spectrum of A. The probabilities assigned by vector qb are generated by the 
"size" of the components of qb along these axes, or alternatively the "size" 
of the projection of qb into the subspaces (see Section 2.4 above). This 
decomposition allows yon Neumann to associate with any observable A a 
set of properties, represented by the projection operators of the spectral 
decomposition of A. These are themselves "observable operators," as von 
Neumann points out: 
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Apart from the physical quantities R there exists another category of  concepts 
that are important objects o f  physics, namely the properties of  the states of  the 
system S. Some such properties are: that a certain quantity R takes the value h, 
or that the value of  R is positive, or that the values of two simultaneously 
observable quantities R, S, are equal to h and I~- respectively, or that the sum of  
the squares of  these values is > 1, etc. We denote the quantities by R, S , . .  and the 
properties by E, F . .  The hypermaximal Hermitian operators R, S . . . .  correspond to 
the quantities as was discussed above. Now what corresponds to the properties? 

To each property E we can assign a quantity which we define as follows: 
each measurement which distinguished between the presence or absence of  E is 
considered a measurement of  this quantity, such that its value is 1 if E is verified, 
0 in the opposite case. This quantity which corresponds to E will also be denoted 
by E. (von Neumann, 1955, p. 249) 

Note that von Neumann uses "quanti ty" where we have used "magnitude." 
He then proceeds to show the relation between the projection operators 
corresponding to these properties, and subspaces of the Hilbert space: 

The projections E therefore correspond to the properties E (through the agency 
of  the corresponding quantities E which we just defined). If we introduce, along 
with the projections E the closed linear manifolds belonging to them (E = PM), 
then the closed linear manifolds correspond equally to the properties of E. 

If in state ~ we want to determine whether or not a property E is verified, then 
we must measure the quantity E, and ascertain whether its value is 1 or 0 (these 
processes are identical by definition). The probability of  the former, i.e. that E 
is verified, is consequently equal to the expectation value of  E, i.e. (E~, 0 )  = 
IIE+tI-" = [IP~I~II 2 and that o f  the latter, i.e. that E is not verified, is equal to the 
expectation value of  1 - E, i.e. (1 - E~b, qb) = U(I - E)~II -~ = I1~ - PM'~II 2. 
The sum is of  course equal to (d~, ~b), i.e. to 1. Consequently E is certainly present 
or certainly absent, if the second or first probability respectively is equal to zero, 
i.e. tbr PM~b = dp or PM~b = 0. That is, if ~ belongs to M or is orthogonal to 
M respectively; or if ~b belongs to M or to ~h~ - M (Ibid., p. 250) 

Von Neumann now proceeds to show how properties and the associated 
subspaces can be combined: 

It is clear that E, r are simultaneously decidable if and only if the corresponding 
quantities E, r are simultaneously measurable (whether with arbitrarily great 
or with absolute accuracy is unimportant since they are capable of  the values 
0, 1 only), i.e. if E, F commute. The same holds for several properties E, F, G . . .  

From properties E, r ,  which are simultaneously decidable we can form the 
additional properties " E  and r ' "  and " E  or r " .  The quantity corresponding to 
"E  and r "  is 1 if those corresponding to E and to F are both 1 and it is 0 if 
one of these is 0. Hence it is the product of  these quantities . . . .  its operator is 
then the product o f  the operators of  E and F, i.e. E F , . .  and, the corresponding 
closed linear manifold is the set L common to both M and N. (Ibid., p. 251) 
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A similar analysis shows that " E  or r "  is associated with projection operator 
E + F - EF, and hence with the linear manifold M + (N - L). He finishes 
the discussion with this conclusion: 

As can be seen, the relation between the properties of a physical system on the 
one hand and the projections on the other, makes possible a sort of logical calculus 
with these. However in contrast to the concepts of ordinary logic, this system is 
extended by the concept of "'simultaneous decidability" which is characteristic 
for quantum mechanics. (Ibid., p. 253) 

We see here that von Neumann's own conclusion does not support the view 
later argued in the joint paper with Birkhoff, that quantum theories are 
nondistributive. Instead he has concluded that complex properties are not 
always defined. 

The analysis of properties can be summarized thus: According to von 
Neumann, we can consider for any magnitude R some particular value or 
range of  values h and this corresponds to a "property" E which is also a 
magnitude and can be associated with a projection operator E which is an 
observable operator and which characterizes a subspace M. We determine 
whether the property "obtains in a state + "  by measuring the magnitude E, 
then determining whether E+ = 1 or E+ = 0 after the measurement, or 
correspondingly whether PMqb = qb or PM~b = 0 corresponding to property 
E being certainly true after the measurement or 1 - E being certainly true, 
respectively. This analysis does establish a natural relation among properties, 
subspaces, and projection operators. 

However, in considering whether these properties or the associated sub- 
spaces are nondistributive we need to consider how they are combined, and 
this requires that we determine how complex properties are formed from 
simple ones. It follows from von Neumann's own characterization quoted 
above that properties are predictions about the certainty of outcomes of 
measurement. Von Neumann's properties (or Jauch's propositions or "yes/  
no experiments")  are not therefore truth-functional propositions or predicates 
in any standard logical sense. "Connect ives" among properties, unlike truth- 
functional logical connectives, will not always be defined. For two properties 
can only be combined to form a new property if their constituents are simulta- 
neously decidable. Where constituents are not simultaneously decidable we 
cannot find a magnitude whose measurement has all constituents as outcomes, 
and so no complex property can be defined in terms of  them, i.e., we cannot 
consider their "certainty after measurement." In classical theories since states 
are bivalent, all elementary propositions are simultaneously decidable in any 
classical state, so this is not an issue. But in quantum theories, as von 
Neumann remarks, properties will only be combined if associated magnitudes 
are compatible. 
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Once we appreciate the nature of properties in this sense, we see that 
arguments for nondistributivity in quantum theories arise from confusion 
about the combination of elementary into complex properties. It is generally 
accepted that where magnitudes are compatible corresponding set relations 
among subspaces of Hilbert space are also completely classical, i.e., the set 
combinations are distributive. Arguments for the failure of distribution rely 
on cases where the subspaces combined correspond to incompatible magni- 
tudes. Yet we have seen that in such cases corresponding complex properties 
in fact do not exist, i.e., the combinations of constituent properties are not 
well defined, and thus questioning the distributivity of their combination is 
not an issue. 

We attempt to make these points completely clear by expressing von 
Neumann's analysis in logical terms, using the modal extensions of L which 
were sketched in Sections 2.1 and 2.3 above. It is clear that the "properties" 
as defined by von Neumann do not correspond to predicates or simple truth- 
functional propositions. They are expressed instead by modalities since they 
correspond to "certainty of outcome after measurement." Thus the property 
that (M, A) is certain to be true after a measurement of M on initial state do, 
corresponding, say, to P~b  = do or PMdo = 0 for initial dO, does not simply 
represent the predicate p = (M, A), but instead the much stronger modal 
expression OMp. Although predicates and properties correspond in a natural 
way, the structure of each and the rules for combining each will be entirely 
different. As we have seen, predicates take truth-values to express proposi- 
tions, and their combination can be analyzed as a generalized classical proposi- 
tional logic with distributive hook but generalized negation. Properties, 
however, are represented by modal wffs and are properly analyzed in a modal 
extension of this propositional logic. 

Definition. In the modal extension of L, LM, we can say wff a is a 
property (an M-property) if eL = rnMp for p = (M, A), p ~ L. 

Properties can be analyzed within LM. For example, one can show 
the following: 

Lemma 3.1. Where p = (M, A l), q = (M, A2), p, q E L, then 

~(~MP v OMq) ~ t3M(p v q) 

Thus the disjunction of  two M-properties is here shown to be itself an 
M-property. Recall that (p v q) = (M, Ai U A2) and so t3M(p v q) is a property 
according to the definition. The equivalence in Lemma 3.1 follows simply 
from the definitions. A special case of this result has particular interest: 

Lemma 3.2. For p = (M, A), p E L, then in LM 
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~(DMp V DMp ±) =-- DM( p V p±) 

After measurement of M some M-outcome must be true, thus the trivial 
M-predicate is certain, and so, too, is one of  the two disjuncts p, p±, by 
definition of  the elementary predicates. This follows in a trivial way from 
Lemma 3.1, the discussion of  measurement in Section 2.3, and the form of  
the elementary predicates. Lemma 3.2 thus provides us with what may be 
viewed as a "weak version" of the Excluded Middle, ~DM(p v p±), which 
does hold for properties in any theory. 

We can also express, using the modalities, one of  the key differences 
between properties in a classical and a quantum theory. First we define a 
new modal operator to express "certainty in every state": 

(VDs) h(~set) = t i f f  h*(et) = t Vh*: h* is a state of T 

If we extend LM to include this operator and valuation rule (Vns), we 
can make explicit a key difference between properties in classical and in 
quantum theories: 

Lemma 3.3. For every p = (M, A), p E L, then in the modal extension 
LM: In a classical theory NNM(p v p±) -- Os( p v p±). In a quantum theory 
this is not the case. 

In classical theories the fact that (p v p±) is certain after measurement 
of M ensures that (p v p±) is true in every state, by the bivalence of  states 
and Lemma 2.1. In quantum theories this does not hold. Although (p v p±) 
is certain to be true after measurement of M given any initial h, it is not 
certain to be true in every state. 

Confusion between the two modalities expressed here by a M and o s 
most likely accounts for the nearly universal assumption that Excluded Middle 
is a logical truth of  mechanical theories, or equivalently that the descriptions 
of  mechanics must be represented by a lattice with full lattice complementa- 
tion. It is the result in Lemma 3.2, the "weak version" of  Excluded Middle, 
which maybe motivates Birkhoff and von Neumann to assume in their exam- 
ple that (a U a ' )  = I ,  and Jauch to assume that (M U M ±) = H. But this 
"weak Excluded Middle" does not justify their much stronger assumptions, 
as we see in Lemma 3.3. In a theory without bivalent states, certainty of  
outcome after measurement is not the same truth in all states, or as logical 
truth. 

Another key difference between classical and quantum properties can 
be expressed in the modal language, namely the ways in which M- and N- 
properties are combined. 

Lemma 3.4. For p = (M, A), q = (M*, A*), p, q ~ L, M 4: M*, then 
in extension LM: In classical theory ~(DMp ^ DM,q) --= D~(p ^ q) some 
magnitude N of T. In quantum theory this is not the case. 
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In classical theories elementary properties can always be combined using 
logical connectives to form complex properties, even when the predicates 
contain distinct magnitudes. In quantum theories such combinations do not 
in general yield properties. Thus the M- and M*-predicates can always be 
combined by logical connectives to form wffs (though these may not be 
assigned a truth-value and in this sense may not express a proposition), 
but their corresponding properties will not generally combine to form new 
properties, because of the incompatibility of magnitudes. 

Finally, according to the logical analysis there is indeed a natural relation 
between "properties" in the modal logic and "subspaces" of valuations in 
the Hilbert space representing this theory. Each value or range of values A 
of magnitude M is associated with the characteristic valuation hl, where p = 
(M, A), and this valuation contains all the "atomic" valuations or rays hpi 
such that Pi = (M, ri) for ri E A Furthermore, the certainty of p being 
true after a measurement of M according to h corresponds to the weak 
conditional probability 

probh(p:M) = Iz,,(S~4) ltxh(S~) = ~h(S~,)lp, h(S~) 

being 1, and this is the case when S~ = S~. When Sf, = S~ t, then p is certain 
to be found true after a measurement of M according to h, and hence we can 
say in this case that p is a certain outcome of M, or that the "property p"  
obtains. In this way property p according to initial h naturally corresponds 
to subspace S~ "M, and in general property p can be seen to correspond to 
S pA ,  i.e., to SP. 

It follows also from this analysis that where compatible magnitudes 
are concerned, subspace operations do indeed correspond to "connectives" 
among properties. We have already seen, for example, that 

probh((p v "p):M) = ~Zh(S~, U S-~P)I~h(S~) = 1 

and so in this sense the disjunction of properties in Lemma 3.2 does correspond 
to set union among associated subspaces. But once more we see that where 
more than one magnitude is involved, corresponding subspaces may not exist, 
and so corresponding set combinations may not be defined. Suppose we let 
q = (M*, A*), then set e~ = (q A (p V -~p)). This w f f c a n  always be 
constructed in L, but it only represents a property if there is a corresponding 
t~Ne~ where N is a magnitude whose measurement decides all constituent 
predicates--and this will be the case only if the corresponding magnitudes 
M, M* are compatible. In general M and M* are not compatible and there 
is no se t  S~ q^(pv~p)}^u in H precisely because there is no such N. 

Finally we turn again to Jauch's example and consider it now as an 
argument about properties in yon Neumann's sense. First we note that while 
(M U M ±) is certain to be true after measurement of M, and in this sense it 
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does represent a complex property, (M U M ±) will not be true in every state 
(Lemma 3.3), and hence we do not accept that (M U M ±) = H. Furthermore, 
Jauch chooses N such that N n M = Q = N n M ±, which is to say that 
these magnitudes M and N are not compatible. But it therefore follows that 
N n (M U M ±) fails to be a property and in particular N n (M U M ±) 4: 
N. Distributivity does not fail! 

Arguments from properties or their associated subspaces in Hilbert space 
which supposedly show that quantum properties or quantum set operations 
are not distributive in fact show only what von Neumann claimed at the 
outset-- that  we have to take into account "simultaneous decidability" in 
defining complex properties. Such arguments establish only that in quantum 
theories not all "properties" can be combined, because constituent predicates 
are not "simultaneously decidable," i.e., because all magnitudes are not 
compatible. And this of course we already know, for it corresponds exactly 
to the fact that there are no bivalent valuations in quantum theories. 

3.2. Bell's Inequality 

An argument similar to those discussed above but with even more 
shocking conclusions is based on the work of Bell and received credibility 
recently when experiment verified the failure of Bell's inequality in quantum 
theories. The physicist Bernard d'Espagnat has championed this view, and 
gives it very detailed discussion in d'Espagnat (1979, 1989) (see also Bell, 
1987). D'Espagnat (1979), entitled Quantum Theory and Reality, gives a 
taste of his drastic conclusions in the subtitle: The doctrine that the worm 
is made up of  objects whose existence is independent of human consciousness 
turns out to be in conflict with quantum mechanics and with facts established 
by experiment. 

D'Espagnat argues step by step from the " fac t"  that quantum properties 
cannot be added or "counted up" in the usual classical way to conclude that 
at least one of  three fundamental assumptions of  science, Realism, Induction, 
or Locality, must fail. He admits that each is fundamental to our world view, 
and describes them as follows: 

One is realism, the doctrine that regularities in observed phenomena are caused 
by some physical reality whose existence is independent of human observers. 
The second premise holds that inductive inference is a valid mode of reasoning 
and can be applied freely so that legitimate conclusions can be drawn from 
consistent observations. The third premise is called Einstein separability or Ein- 
stein locality, and states that no influence of any kind can propagate faster than 
the speed of light. (D'Espagnat, 1979, p. 128) 

D'Espagnat takes a simple example of Bell's inequality concerning a system 
with spin defined in three different directions A, B, C, each having a possible 
value of just up or down. He thus represents the elementary propositions as 
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pairs, using A + ,  for example,  to indicate "the value of spin in direction A 
is up." He uses symbol N(A + B - )  to indicate the number of individual 
particles which have A + and B - ,  for example,  and then argues from basic 
set theory, for example, that 

N(A + B - )  = N(A + B - C+) + N(A + B -  C - )  

and 

N(A + B - )  <- N(A + C - )  + N(B - C+) 
to conclude that 

N(A + B+) <- N(A + C+) + N(B + C+) 

which is an expression of  Bell 's  inequality (D'Espagnat ,  1987, p. 135). 
As d 'Espagnat  points out, this inequality, while seemingly deduced from 
elementary set theory, is in fact violated in quantum probabilities, a fact 
which has since been supported by experiment. From this come the dire 
conclusions that the underlying premises of  our world view fail. 

D 'Espagnat  does make this remark in his paper: 

Another area that might be scrutinised for unacknowledged assumptions is the 
proof of Bell's Inequality. Indeed it seems the proof does depend on the assumed 
validity of ordinary, two valued logic, where a proposition must be either true 
or false and a spin component must be either plus or minus. Some interpretations 
of quantum mechanics have introduced the idea of a many-valued logic, but these 
proposals have nothing to do with the reasoning applied in this proof. Indeed in 
the context of the proof it is difficult even to conceive of an alternative to two 
valued logic. Unless such a system is formulated it seems best to pass over the 
problem. (d'Espagnat, 1987, p. 138) 

Of  course he "passes over the problem" of losing bivalent logic only to 
confront the problem of  losing a fundamental principle of  his science, and 
eventually reality itself! 

According to the logical analysis of  quantum theory, the failure of  Bell 's  
inequality is not only not paradoxical, it is expected. Whenever maximal 
valuations are notbivalent ,  these inequalities fail. For their "p roo f "  follows 
from erroneous assumptions analogous to those discussed in Section 2.1 
above. For any h E H, or, [3 E L: 

Lemma 3.5. In classical theories 

probh(c0 = probh(ot A [3) + probh(e~ ^ -~[3) 

In quantum theories 

probh(c0 v ~ probh(a A [3) + probh(a A -'[3) 

The result follows from the fact that ([3 v 7[3) is not a logical truth, and 
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hence S~' v~ S~, ̂ mv-~m, so S~' 4: S~, '~^a) LI S~, ~^~)  in general. However, where 
all maximal valuations are bivalent, the corresponding identities do hold. It 
follows that in considering the probabilities of the A, B, and C propositions 
in d'Espagnat's examples, it simply does not follow that N(A + B - )  = N(A 

+ B - C + )  + N(A + B - C - ) ,  for example, an assumption needed to 
derive the inequality. The lack of bivalence, as d'Espagnat himself notes, 
means that Bell's inequality fails. 

Yet there is no mystery about the "many-valued" logic or about the 
"failure of classical bivalent logic." There are only two truth-values t ,f ,  and 
the failure of bivalence simply corresponds to the use of partial valuations, 
not to the existence of some mysterious "extra" value. We are already familiar 
with the use of partial valuations in classical theories, for these correspond 
to probability assignments. Similarly the failure of bivalent logic is not 
mysterious. It was argued above that even in ordinary language we distinguish 
two senses of  "not ,"  so the generalisation to a nonbivalent logic brings us 
closer to ordinary discourse, not further from it. Algebraic analysis has 
shown that the nonbivalent system L is not a radical departure, it is distributive 
and relatively orthocomplemented, compared to the distributive, fully ortho- 
complemented structure of a Boolean algebra. 

In fact, the failure of Bell's inequality can be reexpressed in terms of 
the failure of complex properties discussed above. We see in this example 
that we can introduce the property "spin in direction A," for example, with 
just the two values + and - ,  and similarly we can introduce analogous 
properties in the B and C directions. We can relate these properties to specific 
measurements so that we know exactly in which circumstances A + and in 
which cases A - ,  for example, can be said to hold. But as von Neumann 
pointed out in his original analysis, such properties in quantum theories 
cannot always be combined.  Since the A, B, and C propositions are not all 
simultaneously decidable, i.e., since there is no measurement D which can 
have each of  these as outcomes, there is no complex  proper ty  of the form 
(A +, B - ,  C+) ,  for example. And since there are no such complex properties, 
it is hardly surprising that Bell's inequality, and other expressions which are 
derived by assuming they are well defined, fail in quantum theories. 

It follows that we must be more careful in quantum theories than in 
classical ones to distinguish properties as theoretical terms from real features 
of the system described. Paradox results if we talk of "real properties" not 
combining in an expected way, while no paradox arises if we admit that our 
theoretical terms, our "predictions about measurement" cannot be meaning- 
fully combined. In quantum theories it appears that our descriptions may not 
"perfectly fit" the reality they describe, in the sense that maximal valuations 
are not bivalent, so more than one state may be needed to describe the same 
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reality, and simple properties in the theory cannot always be combined into 
complex properties. 

So according to the logical analysis of Bell's inequality we merely point 
out that since maximal valuations of quantum theory are not bivalent and 
therefore magnitudes are not compatible, the disjunction A + v A -  is not a 
logical truth. It is a dichotomy imposed by our choice of magnitudes and the 
structure of mechanical predicates, but it is not a logical truth. Because there 
are no bivalent valuations, there will be some states unable to find either of 
the disjuncts true. We know that no quantum state can consistently combine 
truth-assignments to A, B, and C propositions, and so we know that the 
corresponding Bell inequalities fail. Yet this failure does not indicate a break- 
down in the set-theoretic structure of either the logic, the properties, or the 
probability space used in quantum theories. It simply demonstrates that the 
magnitudes used in quantum theories to describe reality are not always 
compatible or equivalently that these theories do not have bivalent states. 
Experimental support of the failure of Bell's inequalities merely confirms 
this fact. 

3.3. Understanding Quantum Mechanics 

We have seen that according to this analysis all the quantum peculiarities 
are explained by the lack of bivalent states in quantum theories. The logical 
laws are the same in classical and quantum mechanics, and set operations, 
underlying axioms of science, and indeed our comprehension of reality itself 
do not break down. Instead the fact that quantum theories use incompatible 
magnitudes whose elementary predicates cannot all be consistently combined 
in a single state-description is sufficient to explain the Hilbert space represen- 
tation and to understand the quantum transitional probabilities as probabilities 
in a well-defined sense. We have seen that where consistent bivalent valuations 
cannot be made from the elementary predicates, probabilities become strongly 
conditional and the quantum peculiarities arise. 

So at last we can see quantum mechanics not as a radical departure 
from classical concepts, but simply as a more general kind of theory using 
correspondingly generalized probabilities. In quantum theories we use 
strongly conditional probabilities, while in classical theories weak condition- 
als will always suffice. We see at last that both theories are legitimate descrip- 
tions of reality, neither departs radically from what we mean by a probability, 
nor do we have to reject fundamental principles of science, nor resort to 
drastic metaphysical assumptions inappropriate to the advancement of sci- 
ence. Instead we explain the quantum peculiarities simply as arising from 
one simple fact about our quantum descriptions--they cannot all be combined 
into consistent bivalent states. 
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In "interpreting" quantum mechanics we are therefore drawn to the 
question of why it is that these theories do use elementary predicates which 
cannot all be consistently combined into bivalent state descriptions, or alterna- 
tively why it is that such theories use incompatible magnitudes. Clearly there 
can be many different explanations or "interpretations" of this, all of which 
might be consistent with the logical analysis presented here. For example, it 
might be argued that it is the nature of subatomic reality itself which imposes 
incompatible magnitudes on quantum theory, or perhaps it is our own human 
brain which limits us to using these descriptions. Such views, being rooted 
in arguments specifically outside the logical considerations, will not be dis- 
proved by them. 

However, the very independence of this logical analysis from physical 
or metaphysical assumptions makes such views implausible. Why appeal to 
outside considerations to explain features arising so obviously from the struc- 
ture of the theory itself? We know from the analysis above that our choice 
of magnitudes and value-sets induces relations among elementary proposi- 
tions and it is these relations which make theories incapable of bivalent states. 

Of course one might conclude that such unique dispersion-free state 
descriptions are impossible, and after all this may prove to be the case. But 
why should we assume that this is so? In advancing science we should search 
for better descriptions of reality, and to do this we should not conclude a 
priori that improvements cannot be made. 

There is after all nothing self-evident in our choice of magnitudes. The 
primitive magnitudes in quantum theory bring with them strong assumptions 
about the nature of reality which derive from classical mechanics and which 
may simply be inappropriate at the subatomic scale. Other descriptions might 
do the job better. For instance, the value-sets of mechanical magnitudes 
assume we are describing a "tiny billiard bail" which has position, for 
example, at one and only one point in space. When predicate (M, ri) is true, 
for M a position magnitude, then predicates (M, r),  r i in VM, must all be 
false by the very nature of the mechanical description, for i ¢ j. Yet there 
are clearly other ways to describe reality which might involve quite different 
structures of elementary descriptions. For instance, we might assume matter 
interacts with space in the sense of creating a distortion in its spatial neighbor- 
hood, in which case descriptions in terms of a single mechanical "point 
position" predicate might be inappropriate. Or we might use a "field theory" 
such as Einstein proposed, where matter is regarded as a singularity of 
space-time itself, and this might require a different structure of elementary 
descriptions again. Clearly such alternative theories could still yield classical 
mechanics in the larger scale where, for example, localized distortions could 
be ignored. But since such a new theory would have elementary predicates 
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and relations different from those used in quantum mechanics, it is at least 
conceivable that such a theory might also have bivalent states. 

Perhaps this is the lesson of this logical analysis: we are describing reality 
using magnitudes that are ill-suited to the task. Although our descriptions are 
meaningful and useful and are confirmed by experiment, they are inadequate 
in a well-defined sense. Because the elementary predicates cannot all be 
consistently combined together, they leave us using only partial descriptions 
even for the states of a system, thus we need several states to describe the 
same reality, strongly conditional probabilities, measurement-dependent state 
descriptions, and irreducibly statistical states. All these peculiarities are a 
consequence ultimately of our choice of elementary description. Yet there 
may be other ways to conceptualize reality based on different magnitudes 
and value-sets, or indeed on a different form of elementary predicate. And 
it is quite conceivable, according to the logical analysis, that a theory with 
a different elementary structure may have bivalent states. In this case, as we 
have seen, it would have no incompatible magnitudes, no uncertainty relations, 
only weakly conditional probabilities, predictions which do not depend on 
measurement, and would have dispersion-free states uniquely describing indi- 
vidual realities. 

It is perhaps interesting to turn finally to the debate between Bohr and 
Einstein of nearly 60 years ago in the light of this analysis. The present 
interpretation of quantum theory agrees with Bohr to the extent that we find 
!anguage at the heart of the issue. It is our choice of magnitudes to describe 
reality which leads to the quantum effects. The use of magnitudes from 
classical mechanics clearly imposes a structure on elementary propositions 
which makes them incapable of all being consistently assigned truth-values, 
hence makes our theory nonclassical. To this extent we agree with Bohr. 
But Bohr added to his insight about the limitations of language a host of 
philosophical baggage which is not accepted here. For example, he maintained 
that we are necessarily bound by our classical concepts and can never break 
free from them, that subatomic reality is in principle indescribable, and that 
all subatomic theories will share the quantum peculiarities. These opinions are 
strongly rejected here. They seem founded purely on metaphysical prejudices 
completely inappropriate to the practice and advance of science! 

Perhaps there is more common ground between the logical analysis 
and Einstein's view, pitted so passionately against Bohr's. Einstein always 
maintained there is an "incompleteness" in quantum theory, and that the 
irreducibly statistical nature of quantum states arises from a defect of the 
theory in the sense that some other theory might not have this feature and 
would thereby describe reality better. And with this we also agree. It is quite 
conceivable that another theory using different magnitudes could describe 
the same reality in a way which allows bivalent maximal valuations of its 
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elementary propositions, and hence uses a single probability space, only 
weakly conditional probabilities, and dispersion-free states. Such a descrip- 
tion, assuming it agreed with measurement, would describe reality better than 
quantum theories. 

Yet it must be said, too, that Einstein's rebuttals of Bohr were grounded 
in a simplistic metaphysics which is not accepted here. He assumed that 
"every element of reality must have a counterpart in the physical theory" 
and attempted to define theoretical terms into ontological reality: " I f  without 
in any way disturbing a system we can predict with certainty (i.e. with 
probability equal to unity) the value of a physical quantity, then there exists 
an element of physical reality corresponding to this physical quantity" (Ein- 
stein et al., 1935). This is particularly ill-considered in the light of the analysis 
of properties above. But perhaps this naive metaphysics is not really the heart 
of his analysis. He considered that the quantum peculiarities arose from 
weaknesses in the theory, not from "God playing dice," and with that the 
present analysis agrees. 

If, as it seems, we cannot add "hidden magnitudes" to generate bivalent 
states in existing quantum theories, then we should accept that the language 
of our present theory is flawed. The descriptions of quantum theory are 
"complete" in the sense of being maximal valuations, as "ful l"  of elementary 
descriptions as possible. But they are not perhaps the best possible descrip- 
tions, not the "best fit" with reality in the sense that they do not allow 
bivalent states. Of course we cannot be sure we will ever find a "better fit," 
a theory with bivalent valuations, and hence dispersion-free states. But likely 
theories should be investigated on the grounds that they might provide a 
better description of reality. 

So this interpretation at least reassures us that no fundamental law of 
logic has broken down, nor has set theory or reality deserted us. Instead we 
accept quantum theory as our present best description of reality and look 
forward to further developments. Like Einstein, we see no reason to suppose 
there is not some modified way of describing subatomic systems which agrees 
with experiment and yet decides all its propositions and thus yields dispersion- 
free states. And like Einstein, if there were such a theory, we would welcome 
it as an advance on quantum mechanics. 
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